Calculating the Amount to be Paid per Month

November 15, 2008

If:

- $p=$ amount initially owed
- $r=$ interest rate, in decimals (accumulating monthly)
- $m=$ number of months in which you want to pay off the money
- $x=$ amount of money to be paid per month
then use the following equation to calculate x :

$$
x=\frac{(p)(r)(1+r)^{(m-1)}}{(1+r)^{m}-1}
$$

I assumed here that you make your first payment before accumulating your first interest.

Example: You owe $\$ 100$ and are charged 10% in monthly rate. You want to pay it off in 4 months. Then:

- $p=100$
- $r=0.1$
- $m=4$

If you plug in these numbers to the equation above, you get:
$x=\frac{(100)(0.1)(1+0.1)^{(4-1)}}{(1+0.1)^{4}-1}=\frac{(10)(1.1)^{(3)}}{(1.1)^{4}-1}=\frac{(10)(1.331)}{(1.4641)-1}=\frac{13.31}{0.4641}=28.68$

So, $x=28.68$, meaning that if you pay $\$ 28.68$ per month, you should be able to pay off the debt.

The following example illustrates this is not B.S.
In the first month, you pay $\$ 28.68$, leaving you $\$ 71.32$. You accumulate a 10% interest rate on that, leaving you with $\$ 78.45$ by the time you make payment next month. Your second payment leaves you with $\$ 49.77$, which becomes $\$ 54.75$ after it accumulates another 10% interest. In the third month, you make another payment, leaving you with $\$ 26.07$, which becomes $\$ 28.68$ after accumulating interest. Your payment in the fourth month leaves you with no debt left!

